By Topic

Kinematically-stabilized microbubble actuator arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guang Yuan ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Xiaosong Wu ; Yong-Kyu Yoon ; Allen, M.G.

A mass-manufacturable endoskeletal micro bubble actuator has been developed and characterized. These pneumatically-actuated devices combine the desirable large deflections of balloon-type actuators with the preferentially-axial deflection of bellows type actuators to produce actuators capable of large deflections in axial directions. This kinematic stabilization is achieved by use of integrated "skeletons" - structures to support desired deflections and suppress unwanted deflections, which underlie the actuator "skin" - elastic structures to help the extended actuator recoil to its original shape. The actuators have been fabricated and characterized, as well as compared with pure-bubble actuators (skin only) and pure-bellows actuators (skeleton only) of the same materials and dimensions. Pure-bubble actuators demonstrated unwanted omni-directional inflation. Pure-bellows actuators demonstrated unstable and irreversible deformation during extension. In contrast, endoskeletal microbubble actuators of 2.6 mm diameter have achieved reversible axial extensions of approximately 0.9 mm.

Published in:

Micro Electro Mechanical Systems, 2005. MEMS 2005. 18th IEEE International Conference on

Date of Conference:

30 Jan.-3 Feb. 2005