By Topic

Marginalized particle filters for mixed linear/nonlinear state-space models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Schon, T. ; Dept. of Electr. Eng., Linkoping Univ., Sweden ; Gustafsson, F. ; Nordlund, P.-J.

The particle filter offers a general numerical tool to approximate the posterior density function for the state in nonlinear and non-Gaussian filtering problems. While the particle filter is fairly easy to implement and tune, its main drawback is that it is quite computer intensive, with the computational complexity increasing quickly with the state dimension. One remedy to this problem is to marginalize out the states appearing linearly in the dynamics. The result is that one Kalman filter is associated with each particle. The main contribution in this paper is the derivation of the details for the marginalized particle filter for a general nonlinear state-space model. Several important special cases occurring in typical signal processing applications will also be discussed. The marginalized particle filter is applied to an integrated navigation system for aircraft. It is demonstrated that the complete high-dimensional system can be based on a particle filter using marginalization for all but three states. Excellent performance on real flight data is reported.

Published in:

Signal Processing, IEEE Transactions on  (Volume:53 ,  Issue: 7 )