By Topic

The (in)accuracy of novice rover operators' perception of obstacle height from monoscopic images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kanduri, A.K. ; Dept. of Mech. & Ind. Eng., Univ. of Iowa, Iowa City, IA, USA ; Thomas, G. ; Cabrol, N. ; Grin, E.
more authors

Researchers have previously described a mobile robot, or rover, operator's difficulty in accurately perceiving the rover's tilt and roll, which can lead to rollover accidents. Safe mobile robot navigation and effective mission planning also require an operator to accurately interpret and understand the geometry and scale of features in the rover's environment. This work presents an experiment that measures an observer's ability to estimate height of distant (5-15 m) obstacles given an accurate local model (e.g., within 0-5 m of the rover), a panoramic image, and a physical mock-up of the local terrain. The experimental conditions were intended to represent a best-case scenario for a stopped rover equipped with short base-line stereoscopic cameras. The participants' task was to extrapolate the well-modeled local geometry to monoscopic images of the more distant terrain. The experiment compared two estimation techniques. With the first technique, each observer physically indicated his or her direct estimates of the obstacle distance and height. With the second estimation technique, which we call horizon analysis, the observer indicated the position of the top and bottom of each rock on an image and the height was calculated by measuring the visual angle between the theoretical horizon and the points indicated by the observer. The direct estimation technique overestimated the height of the rocks by an average of 190%; the horizon analysis technique overestimated by 80%. The results suggest that even when provided with a rich set of supplementary and context information, rover operators have significant difficulty in vertically perceiving the scale of distant terrain. The results also suggest that horizon analysis is a more accurate method for determining the height of distant rover navigation obstacles, when the local terrain is nearly level.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:35 ,  Issue: 4 )