By Topic

Validating human-robot interaction schemes in multitasking environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Crandall, J.W. ; Comput. Sci. Dept., Brigham Young Univ., Provo, UT, USA ; Goodrich, M.A. ; Olsen, D.R., Jr. ; Nielsen, C.W.

The ability of robots to autonomously perform tasks is increasing. More autonomy in robots means that the human managing the robot may have available free time. It is desirable to use this free time productively, and a current trend is to use this available free time to manage multiple robots. We present the notion of neglect tolerance as a means for determining how robot autonomy and interface design determine how free time can be used to support multitasking, in general, and multirobot teams, in particular. We use neglect tolerance to 1) identify the maximum number of robots that can be managed; 2) identify feasible configurations of multirobot teams; and 3) predict performance of multirobot teams under certain independence assumptions. We present a measurement methodology, based on a secondary task paradigm, for obtaining neglect tolerance values that allow a human to balance workload with robot performance.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:35 ,  Issue: 4 )