By Topic

The sensor selection problem for bounded uncertainty sensing models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Isler, V. ; Center for Inf. Technol. Res. in the Interest of Soc., California Univ., Berkeley, CA, USA ; Bajcsy, R.

We address the problem of selecting sensors so as to minimize the error in estimating the position of a target. We consider a generic sensor model where the measurements can be interpreted as polygonal, convex subsets of the plane. This model applies to a large class of sensors including cameras. We present an approximation algorithm which guarantees that the resulting error in estimation is within a factor 2 of the least possible error. In establishing this result, we formally prove that a constant number of sensors suffice for a good estimate-an observation made by many researchers. In the second part of the paper, we study the scenario where the target's position is given by an uncertainty region and present algorithms for both probabilistic and online versions of this problem.

Published in:

Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on

Date of Conference:

15 April 2005