Cart (Loading....) | Create Account
Close category search window
 

A CNN-based object-oriented coding system for real-time video compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Di Sciascio, E. ; Dipt. di Elettrotecnica ed Elettronica, Politecnico di Bari, Italy ; Grieco, L.A. ; Grassi, G.

In this paper we propose to exploit cellular neural networks (CNNs) as a computational tool to obtain real-time compression of video sequences. In particular, we present a CNN-based architecture, which combines object-oriented CNN algorithms and basic coding/decoding MPEG capabilities. The proposed real-time compression architecture has been tested using standard benchmarking video sequences. Simulation results, in terms of compression ratio and peak to signal noise ratio, show that the proposed approach enables CNN-based real-time coding systems with satisfying compression ratios and good visual appearance.

Published in:

Multimedia Signal Processing, 2004 IEEE 6th Workshop on

Date of Conference:

29 Sept.-1 Oct. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.