By Topic

On optimal selection of lip-motion features for speaker identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
H. E. Cetingul ; Coll. of Eng., Koc Univ., Istanbul, Turkey ; E. Erzin ; Y. Yemez ; A. M. Tekalp

This paper addresses the selection of best lip motion features for biometric open-set speaker identification. The best features are those that result in the highest discrimination of individual speakers in a population. We first detect the face region in each video frame. The lip region for each frame is then segmented following the registration of successive face regions by global motion compensation. The initial lip feature vector is composed of the 2D-DCT coefficients of the optical flow vectors within the lip region at each frame. We propose to select the most discriminative features from the full set of transform coefficients by using a probabilistic measure that maximizes the ratio of intra-class and inter-class probabilities. The resulting discriminative feature vector with reduced dimension is expected to maximize the identification performance. Experimental results are also included to demonstrate the performance.

Published in:

Multimedia Signal Processing, 2004 IEEE 6th Workshop on

Date of Conference:

29 Sept.-1 Oct. 2004