By Topic

Trends in biorobotic autonomous undersea vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bandyopadhyay, P.R. ; Office of Naval Res., Arlington, VA, USA

The emergence of biorobotic autonomous undersea vehicle (AUV) as a focus for discipline-integrated research in the context of underwater propulsion and maneuvering is considered within the confines of the Biorobotics Program in the Office of Naval Research. The significant advances in three disciplines, namely the biology-inspired high-lift unsteady hydrodynamics, artificial muscle technology and neuroscience-based control, are discussed in an effort to integrate them into viable products. The understanding of the mechanisms of delayed stall, molecular design of artificial muscles and the neural approaches to the actuation of control surfaces is reviewed in the context of devices based on the pectoral fins of fish, while remaining focused on their integrated implementation in biorobotic AUVs. A mechanistic understanding of the balance between cruising and maneuvering in swimming animals and undersea vehicles is given. All aquatic platforms, in both nature and engineering, except during short duration burst speeds that are observed in a few species, appear to lie within the condition where their natural period of oscillation equals the time taken by them to travel the distance of their own lengths. Progress in the development of small underwater experimental biorobotic vehicles is considered where the three aforementioned disciplines are integrated into one novel maneuvering device or propulsor. The potential in maneuvering and silencing is discussed.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:30 ,  Issue: 1 )