By Topic

Differentiation between melt and freeze stages of the melt cycle using SSM/I channel ratios

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
I. S. Ashcraft ; Center for Remote Sensing, Brigham Young Univ., Provo, UT, USA ; D. G. Long

Microwave remote sensing detection of snow melt and ablation generally focuses on the detection of liquid moisture in the snow-pack. For ablation estimation, it is important to determine if wet snow is in the process of melting or freezing. The different stages of the melt cycle are observed in the diurnal variation of Tb measurements from the Special Sensor Microwave Imager (SSM/I) over Greenland. SSM/I channel ratios exhibit patterns indicating that they are sensitive to melt and freeze stages of the daily melt cycle. The horizontal to vertical polarization ratio is sensitive to surface wetness associated with melting. The 19-37-GHz frequency ratio is sensitive to a frozen surface layer over wet snow which is associated with the freeze stage of the melt cycle. These observations are supported by conceptual models presented here and in in situ measurements from other investigators.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:43 ,  Issue: 6 )