By Topic

Hybrid fuel-cell strategies for clean power generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
K. Rajashekara ; Dynamics & Propulsion Innovation Center, Delphi Corp., Kokomo, IN, USA

A hybrid power system consists of a combination of two or more power generation technologies to make best use of their operating characteristics and to obtain efficiencies higher than that could be obtained from a single power source. Since fuel cells directly convert fuel and an oxidant into electricity through an electrochemical process, they produce very low emissions and have higher operating efficiencies. Hence, combining fuel cells with other sources, the efficiency of the combined system can be further increased or extend the duration of the available power to the load as a backup power. In this paper, different types of fuel-cell hybrid systems and their applications are presented. An analysis of the combined cycle operation of a solid oxide fuel cell (SOFC)-microturbine is presented. A strategy for combining the thermophotovoltaic power generation unit and SOFC to obtain the hybrid power system that would have higher efficiency is proposed. The hybrid operation of wind power and solar power system with proton exchange membrane fuel cell is also presented.

Published in:

IEEE Transactions on Industry Applications  (Volume:41 ,  Issue: 3 )