By Topic

Topological lines in 3D tensor fields and discriminant Hessian factorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
X. Zheng ; Dept. of Comput. Sci., California Univ., Santa Cruz, CA, USA ; B. N. Parlett ; A. Pang

This paper addresses several issues related to topological analysis of 3D second order symmetric tensor fields. First, we show that the degenerate features in such data sets form stable topological lines rather than points, as previously thought. Second, the paper presents two different methods for extracting these features by identifying the individual points on these lines and connecting them. Third, this paper proposes an analytical form of obtaining tangents at the degenerate points along these topological lines. The tangents are derived from a Hessian factorization technique on the tensor discriminant and leads to a fast and stable solution. Together, these three advances allow us to extract the backbone topological lines that form the basis for topological analysis of tensor fields.

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:11 ,  Issue: 4 )