Cart (Loading....) | Create Account
Close category search window
 

Experimental studies of the 2.4-GHz ISM wireless indoor channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
MacLeod, H. ; Dept. of Electr. & Comput. Eng., Dalhousie Univ., Halifax, NS, Canada ; Loadman, C. ; Chen, Z.

Experimental results from indoor measurements of the 2.4-GHz wireless channel are presented. These measurements include both quasi-static and time-varying channel conditions in a number of indoor environments. Four channel propagation characteristics of interest are evaluated. For the time-varying environment, the Doppler spread of the wireless channel is measured. For the quasi-static environment, mean excess delay, rms delay spread, and coherence bandwidth of the channel are determined. The effect each of these propagation characteristics has on multiple antenna wireless systems and their suitability for indoor use is discussed.

Published in:

Communication Networks and Services Research Conference, 2005. Proceedings of the 3rd Annual

Date of Conference:

16-18 May 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.