By Topic

Input-to-state stabilizing MPC for neutrally stable linear systems subject to input constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jung-Su Kim ; Dept. of Electr. Eng., Korea Univ., Seoul, South Korea ; Tae-Woong Yoon ; A. Jadbabaie ; C. De Persis

MPC (model predictive control) is representative of control methods which are able to handle physical constraints. Closed-loop stability can therefore be ensured only locally in the presence of constraints of this type. However, if the system is neutrally stable, and if the constraints are imposed only on the input, global asymptotic stability can be obtained. A globally stabilizing finite-horizon MPC has lately been suggested for the neutrally stable systems using a nonquadratic terminal cost which consists of cubic as well as quadratic functions of the state. In this paper, an input-to-state-stabilizing MPC is proposed for the discrete-time input-constrained neutrally stable system using a non-quadratic terminal cost which is similar to that used in the global stabilizing MPC, provided that the external disturbance is sufficiently small. The proposed MPC algorithm is also coded using an SQP (Sequential Quadratic Programming) algorithm, and simulation results are given to show the effectiveness of the method.

Published in:

Decision and Control, 2004. CDC. 43rd IEEE Conference on  (Volume:5 )

Date of Conference:

14-17 Dec. 2004