By Topic

A Lie-algebraic condition for stability of switched nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Margaliot ; Sch. of Electr. Eng., Tel Aviv Univ., Israel ; D. Liberzon

We present a stability criterion for switched nonlinear systems which involves Lie brackets of the individual vector fields but does not require that these vector fields commute. A special case of the main result says that a switched system generated by a pair of globally asymptotically stable nonlinear vector fields whose third-order Lie brackets vanish is globally uniformly asymptotically stable under arbitrary switching. This generalizes a known fact for switched linear systems and provides a partial solution to the open problem posed by Liberzon (2004). To prove the result, we consider an optimal control problem which consists in finding the "most unstable" trajectory for an associated control system, and show that there exists an optimal solution which is bang-bang with a bound on the total number of switches. By construction, our criterion also automatically applies to the corresponding relaxed differential inclusion.

Published in:

Decision and Control, 2004. CDC. 43rd IEEE Conference on  (Volume:5 )

Date of Conference:

14-17 Dec. 2004