By Topic

Feedback utilization control in distributed real-time systems with end-to-end tasks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chenyang Lu ; Dept. of Comput. Sci. & Eng., Washington Univ., St. Louis, MO, USA ; Xiaorui Wang ; X. Koutsoukos

An increasing number of distributed real-time systems face the critical challenge of providing quality of service guarantees in open and unpredictable environments. In particular, such systems often need to enforce utilization bounds on multiple processors in order to avoid overload and meet end-to-end deadlines even when task execution times are unpredictable. While recent feedback control real-time scheduling algorithms have shown promise, they cannot handle the common end-to-end task model where each task is comprised of a chain of subtasks distributed on multiple processors. This paper presents the end-to-end utilization control (EUCON) algorithm that adaptively maintains desired CPU utilization through performance feedbacks loops. EUCON is based on a model predictive control approach that models utilization control on a distributed platform as a multivariable constrained optimization problem. A multi-input-multi-output model predictive controller is designed based on a difference equation model that describes the dynamic behavior of distributed real-time systems. Both control theoretic analysis and simulations demonstrate that EUCON can provide robust utilization guarantees when task execution times deviate from estimation or vary significantly at runtime.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:16 ,  Issue: 6 )