By Topic

Ligand-installed PEGylated bionanosphere

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Y. Nagasaki ; Dept. of Mater. Sci., Tokyo Univ. of Sci., Noda, Japan ; K. Kataoka

The synthesis of poly(ethylene glycol)-b-poly(2-N,N-dimethylaminoethylmethacrylate) processing an acetal group at the PEG chain end (acetal-PEG/PAMA) is reported. The obtained acetal-PEG/PAMA block copolymer was found to reduce tetrachloroauric acid at room temperature to produce gold nanoparticles. The size of these nanoparticles was controllable in the range of 6 to 13 nm by changing the initial Au3+: polymer ratio. In addition to the reduction of tetrachloroauric acid, acetal-PEG/PAMA bonds on the surface of the obtained gold nanoparticles to improve their dispersion stability in an aqueous medium even at a salt concentration as high as two. Biotinyl-PEG/PAMA-anchored gold nanoparticles undergo specific aggregation in the presence of streptavidin thereby revealing their promising utility as colloidal sensing systems for use in biological systems. Biotin-PEG/PAMA can also be utilised for the preparation of a functionally PEGylated quantum dot (QD). When CdCl2 and Na2S were mixed in aqueous media in the presence of the biotin-PEG/PAMA, a CdS QD with an ∼5 nm size was prepared. The polyamine segment was anchored onto the surface of the formed CdS nanoparticle, whereas the PEG segment was tethered onto the surface to form a hydrophilic palisade, thus improving the dispersion stability in aqueous media even under a high salt concentration condition. An effective fluorescent resonance energy transfer (FRET) was observed by the specific interaction of the biotin-PEG/PAMA stabilised CdS QD with TexasRed-labelled streptavidin with the physiological ionic strength of 0.15 M. The extent of the energy transfer was in proportion to the concentration of the TexasRed-streptavidin. This FRET system using the PEGylated CdS QD coupled with fluorescent-labelled protein can be utilised as a highly sensitive bioanalytical system.

Published in:

IEE Proceedings - Nanobiotechnology  (Volume:152 ,  Issue: 2 )