By Topic

Application of S-model learning automata for multi-objective optimal operation of power systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

A learning automaton systematically updates a strategy to enhance the performance of a system output. The authors apply, a variable-structure learning automaton to achieve a best compromise solution between the economic operation and stable operation in a power system when the loads vary randomly. Both the generation cost for economic operation and the modal performance measure for stable operation of the power system are considered as performance indices for multi-objective optimal operation. In particular, it is shown that the S-model learning automata can be applied satisfactorily to the multi-objective optimisation problem to obtain the best trade-off between the conflicting objectives of economy and stability in the power system.

Published in:

Generation, Transmission and Distribution, IEE Proceedings-  (Volume:152 ,  Issue: 2 )