By Topic

Static VAR compensator-based voltage control implementation of single-phase self-excited induction generator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
T. Ahmed ; Dept. of Electr. & Electron. Syst. Eng., Yamaguchi Univ., Japan ; K. Nishida ; K. Soushin ; M. Nakaoka

A single-phase static VAR compensator (SVC) is proposed to regulate smoothly the output voltage of a single-phase self-excited induction generator (single-phase SEIG) driven by a variable-speed prime mover (VSPM) due to inductive load and prime mover speed variations. A PI feedback closed-loop voltage regulation scheme is presented to adjust the equivalent excitation capacitance of the single-phase SVC. The SVC is composed of a fixed excitation capacitor (FC), thyristor switched capacitor (TSC) and thyristor controlled reactor (TCR). The steady-state single-phase SEIG output voltage and the TCR triggering angle responses of the proposed scheme are simply evaluated and discussed. A small-scale single-phase SEIG voltage control prototype is designed in order to verify system viability and assess its performance. System dynamic operation is studied based on experimental results. Simulation and experimental results prove system practical effectiveness in terms of fast response and high performance.

Published in:

IEE Proceedings - Generation, Transmission and Distribution  (Volume:152 ,  Issue: 2 )