By Topic

An advanced engine thermal management system: nonlinear control and test

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Setlur, P. ; Electr. Eng. Dept., California State Univ., Sacramento, CA, USA ; Wagner, J.R. ; Dawson, D.M. ; Marotta, E.

Internal combustion engine thermal management system functionality can be enhanced through the introduction of smart thermostat valves and variable speed electric pumps and fans. The traditional automotive cooling system components include a wax based thermostat valve and crankshaft driven water pump. However, servo-motor driven valves, pumps, and fans can better regulate the engine's coolant fluid flow to realize fuel economy gains and tailpipe emission reductions. To study these cooling system actuators, with accompanying nonlinear control strategy, a scale experimental system has been fabricated which features a smart valve, electric coolant pump, radiator with electric fan, and immersion heater. In this paper, mathematical models will be presented to describe the system's behavior. A nonlinear controller will then be designed for transient temperature tracking. Representative experimental results are presented and discussed to demonstrate the smart valve's operation in maintaining the temperature within a neighborhood of the target value for various scenarios including highway mode, full power with load disturbance, and quick heat.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:10 ,  Issue: 2 )