By Topic

Characterization and quantification of data voids in the shuttle Radar topography mission data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hall, O. ; Dept. of Civil & Environ. Eng., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Falorni, G. ; Bras, R.L.

The goal of this study was to characterize and quantify the occurrence of data voids in data from the Shuttle Radar Topography Mission (SRTM) for the conterminous United States. For this purpose, SRTM data and corresponding data from the national elevation data were downloaded in 21 samples spatially organized to cover the main topography of the U.S. Void locations in SRTM data were compared to terrain attributes and subsequently the area of individual data voids to the same attributes. It was found that data voids amounted to 0.3% of the total dataset. Data voids were found in all topographic settings but more often in slopes steeper than approximately 20° that face south (170°), and also in flat areas such as lakes and rivers. It was also found that more than 50% of all data voids were composed of connected pixels in groups less than six pixels. The largest data voids could be attributed to water bodies, while the rest could be explained by terrain-radar interaction characteristics.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:2 ,  Issue: 2 )