By Topic

A multilevel relaxation algorithm for simultaneous localization and mapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Frese, U. ; Bremen Inst. of Safe Syst., Univ. of Bremen, Germany ; Larsson, P. ; Duckett, T.

This paper addresses the problem of simultaneous localization and mapping (SLAM) by a mobile robot. An incremental SLAM algorithm is introduced that is derived from multigrid methods used for solving partial differential equations. The approach improves on the performance of previous relaxation methods for robot mapping, because it optimizes the map at multiple levels of resolution. The resulting algorithm has an update time that is linear in the number of estimated features for typical indoor environments, even when closing very large loops, and offers advantages in handling nonlinearities compared with other SLAM algorithms. Experimental comparisons with alternative algorithms using two well-known data sets and mapping results on a real robot are also presented.

Published in:

Robotics, IEEE Transactions on  (Volume:21 ,  Issue: 2 )