Cart (Loading....) | Create Account
Close category search window
 

Microfluidic electrodischarge devices with integrated dispersion optics for spectral analysis of water impurities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Long Que ; Electr. Eng. & Comput. Sci. Dept., Univ. of Michigan, Ann Arbor, MI, USA ; Wilson, C.G. ; Gianchandani, Y.B.

This paper reports a microfluidic device that integrates electrical and optical features required for field-portable water-chemistry testing by discharge spectroscopy. The device utilizes a dc-powered spark between a metal anode and a liquid cathode as the spectral source. Impurities are sputtered from the water sample into the microdischarge and characteristic atomic transitions due to them are detected optically. A blazed grating is used as the dispersion element. The device is fabricated from stacked glass layers, and is assembled and used with a charge-coupled device (CCD) sensing element to distinguish atomic spectra. Two structural variations and optical arrangements are reported. Detection of Cr and other chemicals in water samples has been successfully demonstrated with both devices. The angular resolution in terms of angular change per unit variation in wavelength (∂θ/∂λ) is experimentally determined to be approximately 0.10 rad/μm, as opposed to the idealized theoretical estimate of 0.22 rad/μm. This is because the microdischarge is uncollimated and not a point source. However, this is sufficient angular resolution to allow critical spectra of metal impurities to be distinguished.

Published in:

Microelectromechanical Systems, Journal of  (Volume:14 ,  Issue: 2 )

Date of Publication:

April 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.