Cart (Loading....) | Create Account
Close category search window

Three-dimensional target motion analysis using angle and frequency measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Becker, K. ; FGAN/FKIE, Wachtberg, Germany

It is well known that passive target tracking by a single observer, commonly referred to as target motion analysis (TMA), can be done using angle and/or frequency measurements. Depending on the measurement set, different passive tracking procedures result: angle-only tracking (AOT), frequency-only tracking (FOT), and angle/frequency tracking (AFT). Whereas the two-dimensional passive tracking problem has been solved for a multitude of scenarios, thus giving a good insight into the parametric dependences, the three-dimensional problem has been discussed only in a few specific cases. To get a deeper insight into the parametric dependences of three-dimensional TMA, this work analyzes AOT and AFT in typical three-dimensional Airborne Warning and Control System (AWACS) scenarios. A Cramer Rao (CR) analysis of the problem reveals the parametric dependences of both methods and gives a clear idea of the increase in estimation accuracy by using AFT instead of AOT. The results obtained in this way are well confirmed by Monte Carlo simulations taking maximum likelihood (ML) as estimation procedure.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:41 ,  Issue: 1 )

Date of Publication:

Jan. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.