By Topic

Manoeuvring target tracking in clutter using particle filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Morelande, M.R. ; Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic., Australia ; Challa, S.

A particle filter (PF) is a recursive numerical technique which uses random sampling to approximate the optimal solution to target tracking problems involving nonlinearities and/or non-Gaussianity. A set of particle filtering methods for tracking and manoeuvering target in clutter from angle-only measurements is presented and evaluated. The aim is to compare PFs to a well-established tracking algorithm, the IMM-PDA-EKF (interacting multiple model, probabilistic data association, extended Kalman filter), and to provide an insight into which aspects of PF design are of most importance under given conditions. Monte Carlo simulations show that the use of a resampling scheme which produces particles with distinct values offers significant improvements under almost all conditions. Interestingly, under all conditions considered here,using this resampling scheme with blind particle proposals is shown to be superior, in the sense of providing improved performance for a fixed computational expense, to measurement-directed particle proposals with the same resampling scheme. This occurs even under conditions favourable to the use of measurement-directed proposals. The IMM-PDA-EKF performs poorly compared with the PFs for large clutter densities but is more effective when the measurements are precise.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:41 ,  Issue: 1 )