By Topic

Automatic CRP mapping using nonparametric machine learning approaches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaomu Song ; Sch. of Electr. & Comput. Eng., Oklahoma State Univ., Stillwater, OK, USA ; Guoliang Fan ; Rao, M.

This paper studies an uneven two-class unsupervised classification problem of satellite imagery, i.e., the mapping of U.S. Department of Agriculture's (USDA) Conservation Reserve Program (CRP) tracts. CRP is a nationwide program that encourages farmers to plant long-term, resource conserving covers to improve soil, water, and wildlife resources. With recent payments of nearly US $1.6 billion for new enrollments (2002 signup), it is imperative to obtain accurate digital CRP maps for management and evaluation purposes. CRP mapping is a complex classification problem where both CRP and non-CRP areas are composed of various cover types. Two nonparametric machine learning approaches, i.e., decision tree classifier (DTC) and support vector machine (SVMs) are implemented in this work. Specifically, considering the importance of CRP classification sensitivity, a new DTC pruning method is proposed to increase recall. We also study two SVM relaxation approaches to increase recall. Moreover, a localized and parallel framework is suggested in order to efficiently deal with the large-scale CRP mapping need. Simulation results validate the applicability of the suggested framework and proposed techniques.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:43 ,  Issue: 4 )