By Topic

Bayesian algorithm for microwave-based precipitation retrieval: description and application to TMI measurements over ocean

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
S. Di Michele ; Eur. Centre for Medium-range Weather Forecasts, Reading, UK ; A. Tassa ; A. Mugnai ; F. S. Marzano
more authors

A physically oriented inversion algorithm to retrieve precipitation from satellite-based passive microwave measurements named the Bayesian algorithm for microwave-based precipitation retrieval (BAMPR) is proposed. First, we illustrate the procedure that BAMPR follows to produce precipitation estimates from observed multichannel brightness temperatures. Retrieval products are the surface rain rates, columnar equivalent water contents, and hydrometeor content profiles, together with the associated estimation uncertainties. Numerical tests performed on simulated measurements show that retrieval errors are reduced when a rain type and pattern classification procedure is employed, and that estimates are quite sensitive to the adopted error model. Finally, for different tropical storms that were observed by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), we compare the rain retrieved from BAMPR relative to those retrieved from the Goddard Profiling (Gprof) algorithm and the Precipitation Radar-adjusted TMI estimation of rainfall (PATER) algorithm. Despite a similar inversion approach, the algorithms exhibit different performances that can be mainly related to different training databases and retrieval constraints such as cloud classification.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:43 ,  Issue: 4 )