By Topic

A new functional model for determining minimum and maximum detectable deformation gradient resolved by satellite radar interferometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Baran, I. ; Western Australian Centre for Geodesy, Curtin Univ. of Technol., Perth, WA, Australia ; Stewart, M. ; Claessens, S.

In this paper, a functional model for determining the minimum and maximum detectable deformation gradient in terms of coherence for synthetic aperture radar (SAR) sensors is presented. The model is developed based on a new methodology that incorporates both real and simulated data. Sets of representative surface deformation models have been simulated, and the associated phase from these models introduced into real SAR data acquired by European Remote Sensing 1 and 2 satellites. Subsequently, interferograms were derived, and surface deformation was estimated. A number of cases of surface deformation with varying magnitudes and spatial extent have been simulated. In each case, the resultant surface deformation has been compared with the "true" surface deformation as defined by the deformation model. Based on these comparisons, a set of observations that lead to a new functional model has been established. Finally, the proposed model has been validated against external datasets and proven viable. Although the major weakness of the model is its reliance on visual interpretation of interferograms, this model can serve as a decision-support tool to determine whether or not to apply satellite radar interferometry to study a given surface deformation.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:43 ,  Issue: 4 )