By Topic

Toward quality EDA tools and tool flows through high-performance computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Ng ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; I. L. Markov

As the scale and complexity of VLSI circuits increase, electronic design automation (EDA) tools become much more sophisticated and are held to increasing standards of quality. New-generation EDA tools must work correctly on a wider range of inputs, have more internal states, take more effort to develop, and offer fertile ground for programming mistakes. Ensuring quality of a commercial tool in realistic design flows requires rigorous simulation, non-trivial computational resources, accurate reporting of results and insightful analysis. However, time-to-market pressures encourage EDA engineers and chip designers to look elsewhere. Thus, the recent availability of cheap Linux clusters and Grids shifts the bottleneck from hardware to logistical tasks, i.e., the speedy collection, reporting and analysis of empirical results. To be practically feasible, such tasks must be automated; they leverage high-performance computing to improve EDA tools. In this work we outline a possible infrastructure solution, called bX, explore relevant use models and describe our computational experience. In a specific application, we use bX to automatically build Pareto curves required for accurate performance analysis of randomized algorithms.

Published in:

Sixth international symposium on quality electronic design (isqed'05)

Date of Conference:

21-23 March 2005