By Topic

Downward refinement in the ALN description logic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Fanizzi, N. ; Dipt. di Informatica, Universita degli Studi di Bari, Italy ; Ferilli, S. ; Iannone, L. ; Palmisano, I.
more authors

We focus on the problem of specialization in a description logics (DL) representation, specifically the ALN language. Standard approaches to learning in these representations are based on bottom-up algorithms that employ the lcs operator, which, in turn, produces overly specific (overfitting,) and still redundant concept definitions. In the dual (top-down) perspective, this issue can be tackled by means of an ILP downward operator. Indeed, using a mapping from DL descriptions onto a clausal representation, we define a specialization operator computing maximal specializations of a concept description on the grounds of the available positive and negative examples.

Published in:

Hybrid Intelligent Systems, 2004. HIS '04. Fourth International Conference on

Date of Conference:

5-8 Dec. 2004