By Topic

Effect of silhouette quality on hard problems in gait recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zongyi Liu ; Comput. Sci. & Eng. Dept., Univ. of South Florida, Tampa, FL, USA ; S. Sarkar

Gait as a behavioral biometric has been the subject of recent investigations. However, understanding the limits of gait-based recognition and the quantitative study of the factors effecting gait have been confounded by errors in the extracted silhouettes, upon which most recognition algorithms are based. To enable us to study this effect on a large population of subjects, we present a novel model based silhouette reconstruction strategy, based on a population based hidden Markov model (HMM), coupled with an eigen-stance model, to correct for common errors in silhouette detection arising from shadows and background subtraction. The model is trained and benchmarked using manually specified silhouettes for 71 subjects from the recently formulated HumanID Gait Challenge database. Unlike other essentially pixel-level silhouette cleaning methods, this method can remove shadows, especially between feet for the legs-apart stance, and remove parts due to any objects being carried, such as briefcase or a walking cane. After quantitatively establishing the improved quality of the silhouette over simple background subtraction, we show on the 122 subjects HumanID Gait Challenge Dataset and using two gait recognition algorithms that the observed poor performance of gait recognition for hard problems involving matching across factors such as surface, time, and shoe are not due to poor silhouette quality, beyond what is available from statistical background subtraction based methods.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:35 ,  Issue: 2 )