By Topic

A concurrent built-in self-test architecture based on a self-testing RAM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Manufacturing test is carried-out once to ensure the correct operation of the circuit under test right after fabrication, while testing is carried-out periodically to ensure that the circuit under test continues to operate correctly on the field. The use of offline built-in self-test (BIST) techniques for periodic testing imposes the interruption of the normal operation of the circuit under test. On the other hand, the use of input vector monitoring concurrent BIST techniques for periodic testing provides the capability to perform the test, while the circuit under test continues to operate normally. In this paper, a novel input-vector monitoring concurrent BIST technique for combinational circuits based on a self-testing RAM, termed R-CBIST, is presented. The presented technique compares favorably to the other input vector monitoring concurrent BIST techniques proposed so far with respect to the hardware overhead, and the time required for the concurrent test to be completed (concurrent test latency). R-CBIST can be utilized to test ROM because it results in small hardware overhead, whereas there is no need to stop the ROM normal operation.

Published in:

IEEE Transactions on Reliability  (Volume:54 ,  Issue: 1 )