Cart (Loading....) | Create Account
Close category search window
 

The impact of traffic patterns on the overhead of reactive routing protocols

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nianjun Zhou ; Dept. of Electr., Rensselaer Polytech. Inst., Troy, NY, USA ; Wu, H. ; Abouzeid, A.A.

This paper presents a mathematical and simulative framework for quantifying the overhead of reactive routing protocols, such as dynamic source routing and ad hoc on-demand distance vector, in wireless variable topology (ad hoc) networks. A model of the routing-layer traffic, in terms of the statistical description of the distance between a source and a destination, is presented. The model is used to study the effect of the traffic on the routing overhead. Two network models are analyzed; a Manhattan grid model for the case of regular node placement, and a Poisson model for the case of random node placement. We focus on situations where the nodes are stationary but unreliable. For each network model, expressions of various components of the routing overhead are derived as a function of the traffic pattern. Results are compared against ns-2 simulations, which corroborate the essential characteristics of the analytical results. One of the key insights that can be drawn from the mathematical results of this paper is that it is possible to design infinitely scalable reactive routing protocols for variable topology networks by judicious engineering of the traffic patterns to satisfy the conditions presented in this paper.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:23 ,  Issue: 3 )

Date of Publication:

March 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.