Cart (Loading....) | Create Account
Close category search window

Optimized prediction for geometry compression of triangle meshes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chen, D. ; Comput. & Inf. Sci. Dept., Polytech. Univ. Brooklyn, NY, USA ; Yi-Jen Chiang ; Memon, N. ; Xiaolin Wu

In this paper we propose a novel geometry compression technique for 3D triangle meshes. We focus on a commonly used technique for predicting vertex positions via a flipping operation using the parallelogram rule. We show that the efficiency of the flipping operation is dependent on the order in which triangles are traversed and vertices are predicted accordingly. We formulate the problem of optimally (traversing triangles and) predicting the vertices via flippings as a combinatorial optimization problem of constructing a constrained minimum spanning tree. We give heuristic solutions for this problem and show that we can achieve prediction efficiency within 17.4% on average as compared to the unconstrained minimum spanning tree which is an unachievable lower bound. We also show significant improvements over previous techniques in the literature that strive to find good traversals that also attempt to minimize prediction errors obtained by a sequence of flipping operations, albeit using a different approach.

Published in:

Data Compression Conference, 2005. Proceedings. DCC 2005

Date of Conference:

29-31 March 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.