By Topic

Matched information rate codes for Partial response channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Kavcic ; Div. of Eng. & Appl. Sci., Harvard Univ., Cambridge, MA, USA ; Xiao Ma ; N. Varnica

In this paper, we design capacity-approaching codes for partial response channels. The codes are constructed as concatenations of inner trellis codes and outer low-density parity- check (LDPC) codes. Unlike previous constructions of trellis codes for partial response channels, we disregard any algebraic properties (e.g., the minimum distance or the run-length limit) in our design of the trellis code. Our design is purely probabilistic in that we construct the inner trellis code to mimic the transition probabilities of a Markov process that achieves a high (capacity-approaching) information rate. Hence, we name it a matched information rate (MIR) design. We provide a set of five design rules for constructions of capacity-approaching MIR inner trellis codes. We optimize the outer LDPC code using density evolution tools specially modified to fit the superchannel consisting of the inner MIR trellis code concatenated with the partial response channel. Using this strategy, we design degree sequences of irregular LDPC codes whose noise tolerance thresholds are only fractions of a decibel away from the capacity. Examples of code constructions are shown for channels both with and without spectral nulls.

Published in:

IEEE Transactions on Information Theory  (Volume:51 ,  Issue: 3 )