By Topic

Feedback capacity of finite-state machine channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shaohua Yang ; Div. of Eng. & Appl. Sci., Harvard Univ., Cambridge, MA, USA ; A. Kavcic ; S. Tatikonda

We consider a finite-state machine channel with a finite memory length (e.g., finite length intersymbol interference channels with finite input alphabets-also known as partial response channels). For such a finite-state machine channel, we show that feedback-dependent Markov sources achieve the feedback capacity, and that the required memory length of the Markov process matches the memory length of the channel. Further, we show that the whole history of feedback is summarized by the causal posterior channel state distribution, which is computed by the sum-product forward recursion of the Bahl-Cocke-Jelinek-Raviv (BCJR) (Baum-Welch, discrete-time Wonham filtering) algorithm. These results drastically reduce the space over which the optimal feedback-dependent source distribution needs to be sought. Further, the feedback capacity computation may then be formulated as an average-reward-per-stage stochastic control problem, which is solved by dynamic programming. With the knowledge of the capacity-achieving source distribution, the value of the capacity is easily estimated using Markov chain Monte Carlo methods. When the feedback is delayed, we show that the feedback capacity can be computed by similar procedures. We also show that the delayed feedback capacity is a tight upper bound on the feedforward capacity by comparing it to tight existing lower bounds. We demonstrate the applicability of the method by computing the feedback capacity of partial response channels and the feedback capacity of run-length-limited (RLL) sequences over binary symmetric channels (BSCs).

Published in:

IEEE Transactions on Information Theory  (Volume:51 ,  Issue: 3 )