By Topic

A Theoretical minimum DC-link capacitance in PWM converter-inverter systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gu, B.-G. ; Dept. of Electr. Eng., Pohang Univ. of Sci. & Technol., Pohang Kyoungbuk, South Korea ; Nam, K.

In the PWM converter-inverter system, if the converter current control is fast enough to match the inverter power at all instants, then no current flows through the DC-link capacitor, making the DC-link voltage constant, even with a very small DC-link capacitance. A matching control method making the capacitor current zero suggests the possibility of using a tiny DC-link capacitor. However, in practice, a certain amount of capacitance is required, since the matching control itself is not perfect and there are one-step delays in the PWM. In this work, the authors investigate a theoretical low bound of the DC-link capacitance, considering an extreme case in which the DC-link voltage rises to a maximum value in a single PWM period. Utilising the optimisation technique, the theoretical minimum capacitance is found to be the one that limits the voltage rise below a certain threshold value. Analytical calculation results are compared with MATLAB simulation results.

Published in:

Electric Power Applications, IEE Proceedings -  (Volume:152 ,  Issue: 1 )