Cart (Loading....) | Create Account
Close category search window
 

Active filtering of physiological motion in robotized surgery using predictive control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ginhoux, R. ; Univ. of Strasbourg, Illkirch, France ; Gangloff, J. ; de Mathelin, M. ; Soler, L.
more authors

This work presents a predictive-control approach to active mechanical filtering of complex, periodic motions of organs induced by respiration or heart beating in robotized surgery. Two different predictive-control schemes are proposed for the compensation of respiratory motions or cardiac motions. For respiratory motions, the periodic property of the disturbance has been included into the input-output model of the controlled system so as to have the robotic system learn and anticipate perturbation motions. A new cost function is proposed for the unconstrained generalized predictive controller (GPC), where reference tracking is decoupled from the rejection of predictable periodic motions. Cardiac motions are more complex, since they are the combination of two periodic nonharmonic components. An adaptive disturbance predictor is proposed which outputs future predicted disturbance values. These predicted values are used to anticipate the disturbance by using the predictive feature of a regular GPC. Experimental results are presented on a laboratory testbed and in vivo on pigs. They demonstrate the effectiveness of the two proposed methods to compensate complex physiological motion.

Published in:

Robotics, IEEE Transactions on  (Volume:21 ,  Issue: 1 )

Date of Publication:

Feb. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.