By Topic

In situ temperature measurement of a notebook computer - a case study in health and usage monitoring of electronics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vichare, N. ; CALCE Electron. Products & Syst. Center, Univ. of Maryland, College Park, MD, USA ; Rodgers, P. ; Eveloy, V. ; Pecht, M.G.

Reliability prediction methods do not generally account for the actual life cycle environment of electronic products, which covers their environmental, operating and usage conditions. Considering thermal loads, thermal management strategies still focus on a design for continuous operation that is often determined based on an accumulation of worst-case assumptions. Health monitoring is a method of assessing the reliability of a product in its actual application conditions. A case study in health and usage monitoring of electronic products is presented for a commercial notebook computer. Internal temperatures were dynamically monitored in situ and statistically analyzed during all phases of the life cycle, including usage, storage, and transportation. The effects of power cycles, usage history, CPU computing resources usage, and external thermal environment on peak transient thermal loads were characterized. Such monitored life cycle temperature data could be applied in a life consumption monitoring methodology, to provide damage estimation and remaining life prediction due to specific failure mechanisms influenced by temperature. These findings could contribute to the design of more sustainable, least-energy consumption thermal management solutions.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:4 ,  Issue: 4 )