By Topic

Hybrid preemptive scheduling of MPI applications on the grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
A. Bouteiller ; INRIA, Univ. de Paris-Sud, Orsay, France ; H. -L. Bouziane ; T. Herault ; P. Lemarinier
more authors

Time sharing between cluster resources in grid is a major issue in cluster and grid integration. Classical grid architecture involves a higher level scheduler which submits nonoverlapping jobs to the independent batch schedulers of each cluster of the grid. The sequentiality induced by this approach does not fit with the expected number of users and job heterogeneity of the grids. Time sharing techniques address this issue by allowing simultaneous executions of many applications on the same resources. Co-scheduling and gang scheduling are the two best known techniques for time sharing cluster resources. Co-scheduling relies on the operating system of each node to schedule the processes of every application. Gang scheduling ensures that the same application is scheduled on all nodes simultaneously. Previous work has proven that co-scheduling techniques outperforms gang scheduling when physical memory is not exhausted. In this paper, we introduce a new hybrid sharing technique providing checkpoint based explicit memory management. It consists in co-scheduling parallel applications within a set, until the memory capacity of the node is reached, and using gang scheduling related techniques to switch from one set to another one. We compare experimentally the merits of the three solutions: co, gang and hybrid scheduling, in the context of out-of-core computing, which is likely to occur in the grid context, where many users share the same resources. The experiments show that the hybrid solution is as efficient as the co-scheduling technique when the physical memory is not exhausted, and is more efficient than gang scheduling and co-scheduling when physical memory is exhausted.

Published in:

Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop on

Date of Conference:

8 Nov. 2004