By Topic

Trajectory-based optimal linearization for nonlinear autonomous vector fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Belkhouche, F. ; Dept. of Electr. Eng. & Comput. Sci., Tulane Univ., New Orleans, LA, USA

This paper deals with an optimal approximation in the least square sense of nonlinear vector fields. The optimal approximation consists of a linearization along a trajectory that approximates the nonlinear solution from the initial state to the equilibrium position. It is shown that the optimal linearization can be seen as a generalization of the classical linearization. Furthermore, the optimal linearization can approximate the derivative at the equilibrium point, and the order of the method is the same as the nonlinearity, since the approximation depends on the initial state. We also show that the method can be used to study the asymptotic stability of the equilibrium of a nonlinear vector fields, especially in the nonhyperbolic case. Simulation shows good agreement between the linearized and the nonlinear systems.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 1 )