Cart (Loading....) | Create Account
Close category search window
 

Ultrawide-band single-mode transmission performance in a low-loss photonic crystal fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Nakajima, K. ; NTT Access Network Service Syst. Labs., NTT Corp., Ibaraki, Japan ; Jian Zhou ; Tajima, K. ; Kurokawa, K.
more authors

We describe the ultrawide-band single-mode transmission performance of a photonic crystal fiber (PCF) in the 850 to 1550 nm wavelength range. We confirmed that the fabricated PCF achieves a single-mode operation over the 850 to 1550 nm wavelength range by measuring the mode-field diameter (MFD) and modal delay characteristics. The 10-Gb/s-based wavelength-division multiplexing (WDM) signals with a total capacity of 190 Gb/s were successfully transmitted over a 5.2-km low-loss PCF utilizing the 850, 1310, and 1550 nm regions simultaneously. Our experimental results show that an endlessly single-mode PCF provides an ultrawide-band of more than 160 THz for future optical communication systems.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 1 )

Date of Publication:

Jan. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.