By Topic

A pheromone-based utility model for collaborative foraging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Panait, L. ; George Mason University ; Luke, S.

Multi-agent research often borrows from biology, where remarkable examples of collective intelligence may be found. One interesting example is ant colonies?? use of pheromones as a joint communication mechanism. In this paper we propose two pheromone-based algorithms for artificial agent foraging, trail-creation, and other tasks. Whereas practically all previous work in this area has focused on biologically-plausible but ad-hoc single pheromone models, we have developed a formalism which uses multiple pheromones to guide cooperative tasks. This model bears some similarity to reinforcement learning. However, our model takes advantage of symmetries common to foraging environments which enables it to achieve much faster reward propagation than reinforcement learning does. Using this approach we demonstrate cooperative behaviors well beyond the previous ant-foraging work, including the ability to create optimal foraging paths in the presence of obstacles, to cope with dynamic environments, and to follow tours with multiple waypoints.We believe that this model may be used for more complex problems still.

Published in:

Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004. Proceedings of the Third International Joint Conference on

Date of Conference:

23-23 July 2004