By Topic

Delay-spread estimation using cyclic-prefix in wireless OFDM systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Athaudage, C.R.N. ; Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Vic., Australia ; Jayalath, A.D.S.

A novel cyclic-prefix based delay-spread estimation technique for wireless OFDM systems is proposed. In particular, the authors propose a technique for estimating the delays and powers of multipath components when the channel is sparse, i.e. a few strong multipaths distantly spaced in time, and a technique for estimating the RMS delay-spread when the channel has a large number of sample-spaced multipath components. The proposed techniques are based on a multiple-argument correlation function which exhibits change of gradient according to the delay path arrival pattern, i.e delay times and powers. Numerical results demonstrate the accuracy of the proposed techniques in estimating the relative timing and the power of delay paths for a sparse multipath channel, and the RMS delay-spread for a sample-spaced multipath channel. Moreover, the RMS delay-spread estimation can be used adaptively to operate the MMSE channel estimation process in the OFDM receiver at near optimum.

Published in:

Communications, IEE Proceedings-  (Volume:151 ,  Issue: 6 )