By Topic

Pulling the plug on the current drain [threshold switching]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
R. L. Franz ; Motorola Inc., Libertyville, IL, USA

Power management is one of the main challenges to continued development of large-scale integrated circuits. In particular, the offstate, or standby leakage, is becoming a significant fraction of total power consumption as gate dimensions continue to shrink. A review of the literature identified many possible solutions in the application of threshold-switching devices. This data has apparently never been summarized in one place, suggesting a need for this article. This article discusses the capabilities of classical amorphous semiconductor switches, and more recent advances in silicon, III-V materials, and organic semiconductors that all exhibit threshold-switching properties. Applications and future prospects for the development of more energy-efficient devices are discussed. The long-term vision is that conductors themselves can be engineered to dynamically sense and adapt their conductivity to active or passive states as required.

Published in:

IEEE Circuits and Devices Magazine  (Volume:20 ,  Issue: 6 )