Cart (Loading....) | Create Account
Close category search window

Kolmogorov's structure functions and model selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vereshchagin, N.K. ; Dept. of Math. Logic & Theor. of Algorithms, Moscow State Univ., Russia ; Vitanyi, P.M.B.

In 1974, Kolmogorov proposed a nonprobabilistic approach to statistics and model selection. Let data be finite binary strings and models be finite sets of binary strings. Consider model classes consisting of models of given maximal (Kolmogorov) complexity. The "structure function" of the given data expresses the relation between the complexity level constraint on a model class and the least log-cardinality of a model in the class containing the data. We show that the structure function determines all stochastic properties of the data: for every constrained model class it determines the individual best fitting model in the class irrespective of whether the "true" model is in the model class considered or not. In this setting, this happens with certainty, rather than with high probability as is in the classical case. We precisely quantify the goodness-of-fit of an individual model with respect to individual data. We show that-within the obvious constraints-every graph is realized by the structure function of some data. We determine the (un)computability properties of the various functions contemplated and of the "algorithmic minimal sufficient statistic.".

Published in:

Information Theory, IEEE Transactions on  (Volume:50 ,  Issue: 12 )

Date of Publication:

Dec. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.