By Topic

Multilevel routing with jumper insertion for antenna avoidance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsung-Yi Ho ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Yao-Wen Chang ; Sao-Jie Chen

As technology advances into nanometer territory, the antenna problem has caused significant impact on routing tools. The antenna effect is a phenomenon of plasma-induced gate oxide degradation caused by charge accumulation on conductors. It directly influences reliability, manufacturability and yield of VLSI circuits, especially in deep-submicron technology using high density plasma. Furthermore, the continuous increase of the problem size of IC routing is also a great challenge to existing routing algorithms. In this paper, we propose a framework for multilevel full-chip routing with antenna avoidance using built-in jumper insertion approach. Compared with the state-of-the-art multilevel routing, the experimental results show that our approach reduced 100% antenna-violated gates and results in fewer wirelength, vias, and delay increase.

Published in:

SOC Conference, 2004. Proceedings. IEEE International

Date of Conference:

12-15 Sept. 2004