By Topic

Blind source separation via the second characteristic function with asymptotically optimal weighting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
E. Eidinger ; Sch. of Electr. Eng., Tel Aviv Univ., Israel ; A. Yeredor

Blind source separation (BSS) is the problem of reconstructing unobserved, statistically independent source signals from observed linear combinations thereof. An emerging tool for BSS is the second generalized characteristic function (SGCF), as demonstrated, e.g., by the characteristic-function enabled source separation (CHESS) algorithm (Yeredor (2000)). CHESS achieves separation by applying approximate joint diagonalization to a set of estimated second derivative matrices (Hessians) of the SGCF at pre-selected "processing points". An optimization scheme for the CHESS algorithm, based on solving an optimally weighted least-squares (LS) problem, is proposed in this paper. First, it is shown that the approximate joint diagonalization of the Hessians can be formulated as a nonlinear least-squares model. Then, a scheme for a consistent estimator of the optimal weight matrix is proposed. Next, an iterative algorithm for solving the WLS scheme is presented and demonstrated in simulation.

Published in:

Electrical and Electronics Engineers in Israel, 2004. Proceedings. 2004 23rd IEEE Convention of

Date of Conference:

6-7 Sept. 2004