By Topic

Dynamic range reduction inspired by photoreceptor physiology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Reinhard, E. ; Sch. of Comput. Sci., Univ. of Central Florida, Orlando, FL, USA ; Devlin, K.

A common task in computer graphics is the mapping of digital high dynamic range images to low dynamic range display devices such as monitors and printers. This task is similar to the adaptation processes which occur in the human visual system. Physiological evidence suggests that adaptation already occurs in the photoreceptors, leading to a straightforward model that can be easily adapted for tone reproduction. The result is a fast and practical algorithm for general use with intuitive user parameters that control intensity, contrast, and level of chromatic adaptation, respectively.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:11 ,  Issue: 1 )