By Topic

On parallel processing systems: Amdahl's law generalized and some results on optimal design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kleinrock, L. ; Dept. of Comput. Sci., California Univ., Los Angeles, CA, USA ; Jau-Hsiung Huang

The authors model a job in a parallel processing system as a sequence of stages, each of which requires a certain integral number of processors for a certain interval of time. They derive the speedup of the system for two cases: systems with no arrivals, and systems with arrivals. In the case with no arrivals, their speedup result is a generalization of Amdahl's law (G.M. Amdahl, 1967). They extend the notion of power as previously applied to general queuing and computer-communication systems to their case of parallel processing systems. They find the optimal job input and the optimal number of processors to use so that power is maximized. Many of the results for the case of arrivals are the same as for the case of no arrivals. It is found that the average number of jobs in the system with arrivals equals unity when power is maximized. They also model a job in such a way that the number of processors required continuously varies over time. The same performance indices and parameters studied in the discrete model are evaluated for this continuous model

Published in:

Software Engineering, IEEE Transactions on  (Volume:18 ,  Issue: 5 )