By Topic

Design of a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction for the HRRT

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Carson, R.E. ; Dept. of PET, Nat. Inst. of Health, Bethesda, MD, USA ; Barker, W.C. ; Jeih-San Liow ; Johnson, C.A.

The HRRT PET system has the potential to produce human brain images with resolution better than 3 mm. To achieve the best possible accuracy and precision, we have designed MOLAR, a motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction on a computer cluster with the following features: direct use of list mode data with dynamic motion information (Polaris); exact reprojection of each line-of- response (LOR); system matrix computed from voxel-to-LOR distances (radial and axial); spatially varying resolution model implemented for each event by selection from precomputed line spread functions based on factors including detector obliqueness, crystal layer, and block detector position; distribution of events to processors and to subsets based on order of arrival; removal of voxels and events outside a reduced field-of-view defined by the attenuation map; no pre-corrections to Poisson data, i.e., all physical effects are defined in the model; randoms estimation from singles; model-based scatter simulation incorporated into the iterations; and component-based normalization. Preliminary computation estimates suggest that reconstruction of a single frame in one hour is achievable. Careful evaluation of this system will define which factors play an important role in producing high resolution, low-noise images with quantitative accuracy.

Published in:

Nuclear Science Symposium Conference Record, 2003 IEEE  (Volume:5 )

Date of Conference:

19-25 Oct. 2003